Currently, when `$DEBUG` is 2 and the connection is successful, `parse_tls_serverhello()` prints out information about the server's ephermal (EC)DH key, but nothing else. For example:
```
sending client hello... reading server hello...
dh_bits: ECDH, P-256, 256 bits
sending close_notify...
(183 lines returned)
```
This commit changes `parse_tls_serverhello()` so that information about dh_bits is only displayed if `$DEBUG` is at least 3, making it the same as for other information about the server's response.
In addition, it indents the printing of the information about dh_bits in order to better align with other information displayed at this debug level.
- add forgotten servive FTP and XMPP
- polish other services
- after TLS 1.2 run is finished run a check whether no protocol has been detected and ask the user for confirmation to proceed
In `run_protocols()` for TLS 1.2, try one set of 127 ciphers and if the result isn't a connection at TLSv1.2 then try another set of 127 ciphers before giving up and assuming that TLS 1.2 isn't supported.
FIX#786
Fixed all other occurences so that debug level 2 is showing only minimal information like rough status and errors
Better line breaks for level 2
In ``client_simulation_sockets()`` and ``tls_sockets()`` moved debug output into if statements (may save a bit of time)
Replaced "$DEBUG -eq" by "$DEBUG -ge"
Removed obsolete hb_rounds in ``run_heartbleed()``
Adjusted wide output in vulnerabilities
The data for `run_client_simulation()` currently includes two clients that send version 2.0 CLIENT-HELLO messages (see Appendix E.2 of RFC 5246). Each of the CLIENT-HELLO messages advertises support for newer protocol versions (SSLv3 in the case of IE6XP and TLSv1.0 in the case of Java 6u45). A server may reject one of these version 2.0 CLIENT-HELLO messages, or it may respond with an SSLv2, SSLv3, or TLSv1.0 ServerHello.
The current code in `client_simulation_sockets()` assumes that the server's response with be an SSLv3 or later ServerHello. So, it can support cases in which servers respond with an SSLv3 or TLSv1.0 ServerHello (once PR #800 is accepted to undo the mistake in PR #797), but not cases in which servers response with an SSLv2 ServerHello.
This PR adds code to `client_simulation_sockets()` to check if the server's response is an SSLv2 ServerHello, so that it can process such responses with `parse_sslv2_serverhello()` rather than `parse_tls_serverhello()`.
When a connection is made using SSLv3 or later, `run_client_simulation()` will show to the protocol and cipher selected for the connection. With this PR, if the connection is made using SSLv2, `run_client_simulation()` will just show "SSLv2." In the case of SSLv2, the ServerHello contains a list of all ciphers that the server and client have in common, and it is up to the client to choose one. So, if the client and server have more than one cipher in common, more information about the client would be needed to know which cipher it would choose.
`std_cipherlists()` uses `has_server_protocol()` to determine whether to test for ciphers using SSLv2. However, this was resulting in false negatives due to #759. This PR removes the `has_server_protocol()` check so that SSLv2 is checked whenever the connection attempt with the TLSv1.2 ClientHello failed.
This PR fixes the extraction of the cipher suites in SSLv2 ClientHellos in `client_simulation_sockets()`. Since `client_simulation_sockets()` can only handle SSLv3 and above ServerHellos, it removes any SSLv2 ciphers and converts the other cipher from 3-byte format to 2-byte format.
If vulnernable to POODLE and has no TLS_FALLBACK_SCSV ==> HIGH.
If only run the fallback check and it has none, still label it as MEDIUM but issue
a clear warning that test under this circumstances is incomplete.
This PR adds the same additional check to `client_simulation_sockets()` as was previously added to `tls_sockets()`. It extracts the list of cipher suites offered from each ClientHello and passes the list to `parse_tls_serverhello()` so that `parse_tls_serverhello()` can check that the cipher offered in the ServerHello was included in the ClientHello.
This assumes that a real client would abort the connection if it was presented with a cipher in the ServerHello that it didn't offer in its ClientHello.
Unfortunately, most categories were passing incorrectly, since a
tls_socket() error was interpreted as a success for many of the cases.
Now we explicitely check for the known yaSSL failure and raise a warning
that the test is inconclusive.
New output against --starttls=mysql looks like:
Testing ~standard cipher categories
-----------------------------------
NULL ciphers (no encryption) SERVER_ERROR: test inconclusive due to MySQL Community Edition (yaSSL) bug.
Anonymous NULL Ciphers (no authentication) SERVER_ERROR: test inconclusive due to MySQL Community Edition (yaSSL) bug.
Export ciphers (w/o ADH+NULL) SERVER_ERROR: test inconclusive due to MySQL Community Edition (yaSSL) bug.
LOW: 64 Bit + DES encryption (w/o export) offered (NOT ok)
Weak 128 Bit ciphers (SEED, IDEA, RC[2,4]) SERVER_ERROR: test inconclusive due to MySQL Community Edition (yaSSL) bug.
Triple DES Ciphers (Medium) offered
High encryption (AES+Camellia, no AEAD) offered (OK)
Strong encryption (AEAD ciphers) SERVER_ERROR: test inconclusive due to MySQL Community Edition (yaSSL) bug.
Partial workaround for #793
According to a discussion thread on the IETF TLS WG mail list (see https://www.ietf.org/mail-archive/web/tls/current/msg19720.html), there is at least one TLS server that will fail if the last extension in the ClientHello has contains extension_data of length 0.
Currently, `tls_sockets()` will create such a ClientHello if:
* The padding extension is included, and the length of the ClientHello without the padding data would be between 508 and 511 bytes.
* No padding extension is included, and the caller provided `$extra_extensions` in which the last extension in `$extra_extensions` is empty.
* No padding extension is included, `$extra_extensions` is empty, no ECC cipher suites are offered, and the ClientHello is for TLSv1.1 or below (in this case the next protocol extension would be that last one).
This PR avoids the server bug (in nearly all cases) by ensuring the the padding extension (when present) always contains at least one byte, and by ensuring that when the padding extension is not present that the (non-empty) heartbeat extension is the last extension.
This PR does leave one possible scenario in which the last extension would be empty. If the caller provides an `$extra_extensions` in which the last extension in `$extra_extensions` is empty, `tls_sockets()` does not add a padding extension (or a padding extension is included in `$extra_extensions`), and `$extra_extensions` includes a heartbeat extension, then the last extension in the ClientHello would be empty. This, however, is a highly unlikely scenario, and certainly there are currently no such calls to `tls_sockets()` in testssl.sh.
Another yaSSL server incompatiblity. MySQL protects against CCS
Injection by erroring if it sees to CCS requests before the handshake
completes. But instead of returning a TLS alert, it seems to error up
the stack to MySQL which returns it's own error message.
Debug output looks like:
---
sending client hello,
reading server hello
1st reply:
sending payload #2 with TLS version x03, x02:
tls_content_type: 16 | tls_protocol: 0000 | byte6: 04
2nd reply:
00000000 16 00 00 02 ff 13 04 23 30 38 53 30 31 42 61 64 |.......#08S01Bad|
00000010 20 68 61 6e 64 73 68 61 6b 65 | handshake|
0000001a
test failed, probably read buffer too small (16000002FF1304)
---
This patch adds a custom check for this MySQL specific error, as far
down in the error check path as I can.
If $PROTOS_OFFERED was empty, and thus the protocols unknown, this
function would return true for any protocol you passed it. This caused
most callers to assume TLS1.0, even if the server didn't offer it.
Instead return false and make the caller do an extra lookup.
As reported in #782, some servers will return a ServerHello with a cipher not listed in the ClientHello rather than than return an Alert, if the server does not support any of the ciphers listed in the ClientHello.
This commit modifies `tls_sockets()` to check whether the cipher in the ServerHello was one included in the ClientHello and to fail if it wasn't.
This is the simplest direct socket implementation of the MySQL STARTTLS
protocol.
This is a binary protocol, so it requires a new stream based send
(instead of the current line based send).
In `run_hpkp()` there is a call to `$OPENSSL s_client` that uses `${sni[i]}` as one of the command line options, but `sni` is not defined. My guess is that this was a copy/paste error from `run_client_simulation()`, which is the only function where an `sni` array is defined.
I am guessing that the intention was to use `$SNI` in `run_hpkp()`.
openssl/master branch now supports mysql STARTTLS in s_client
This patch adds support to call and use that s_client support to run
most, but not all (pfs, client simulation) tests.
The socket implementation is stubbed, but not yet functional.
testssl.sh is taking an educated guess which port makes sense to scan,
which one not and for which one to use which starttls handshake upfront.
This minimizes needless sscans and error messages.
Parallel mass testing mode is now not anymore experimental. To
use it a separate flag ``--mode=parallel`` was introduced. Serial
is still the default for now to avoid unexpected conditions.
Both the mode arguement and the default is subject to change.
The parallel mass testing mode can now also make use of a
nmap file. Also the functional test for nmap file was put
into a separate function and made more user safe. Open point is
that we better should use the hostname if the forward DNS record matches.
Fixed logical inconsistency: Ticketbleed was not being tested against a server with client authentication
Some variables in the beginning reordered
This PR attempts to address the outstanding issues with respect to issue #733, mainly by addressing the rules for when a certificate is obtained without SNI.
I believe I discovered the reason for issue #757: f2303a0d79.
This commit removed attempted to replace `$cbc_cipher_list_hex` (which was computed on the fly) with `$cbc_ciphers_hex` (which is static). However, the function was still using `$cbc_cipher_list_hex`, and since it wasn't being initialized to "" at the beginning of the function, the second call to `run_beast()` (to handle the second IP address) just appended to the value created by the first. Then, when the first two bytes were removed from the resulting string the result was a malformed cipher suite list, which caused `tls_sockets()` to fail.
Open issues: 1) The SNI logic 2) The fileout logic. 3) another section with ``trust_nosni -eq 4/8``
For 2): fileout is a general finding MEDIUM [1] which isn't in line now with the pr_*finding
in the section above anymore. It would make sense to punish HTTP services more than others.
Unfortunately he fileout statement cannot be moved below pr_svrty_medium/pr_svrty_high as
trustfinding_nosni hasn't been determined yet.
Fast solution would be probably to move the trustfinding_nosni section above the trustfinding
section.
Still 3) and a different trust over non-SNI makes it difficult -- e.g. Server has CN match only over
SNI but without SNI SAN matches. That's an edge case though which probably doesn't exist (like Bielefeld)
[1] That was WARN before. WARN should indicate a status of testssl that it cannot perform a check
This PR implements the suggestion from #753 for a child process in mass testing to send a signal to the parent to exit if the child encounters an error parsing its command line. At the moment, the child only sends the signal if it encounters an error that results in the `help()` function being called, but that could easily be changed (e.g., to also send a signal if `fatal()` is called in the child process).
In the case of parallel mass testing, the cleanup function needs to call `get_next_message_testing_parallel_result()` for the child that sent the signal, since otherwise the child's error message would not be displayed. Since I cannot tell which child sent the signal, I just call `cleanup()`, which displays the output of all completed child processes. Since the child process will send the signal almost immediately after starting, it can be assumed the that process that send the signal will be the last one that completed, and so its output will be displayed last (so it isn't hidden from the user).
Note that PR #753 is still needed, since there are still scenarios in which a child would not produce any JSON output, but the parent testssl.sh would not exit (e.g., the child process cannot open a socket to the server it is supposed to test). In additional, PR #754 would still be useful, since it would be more user friendly to catch the error in the mass testing file immediately (when possible) rather that partway through a potentially time-consuming testing process.
There is a bug in testssl.sh that occurs if mass testing is being performed, there is an error in the command line for one of the child tests, and either a single HTML file or a single JSON file is being created.
If mass testing is being performed and `parse_cmd_line()` detects an error in the command line for one of the child tests, then it will call `help()`, which will exit the program, resulting in `cleanup ()` being called. `cleanup ()` will call `html_footer()` and `fileout_footer()`. Since `html_header()` and `json_header()` have not yet been called, `$HTMLHEADER` and `$JSONHEADER` will both be `true, and so `html_footer()` and `fileout_footer()` will output HTML and JSON footers, even though no headers have been output.
This PR fixes the problem by having `help()` set `$HTMLHEADER` and `$JSONHEADER` to `false` so that no HTML or JSON footers are created.
A related problem is that if a single JSON file is being created, the parent process will insert a separator (a comma) into the JSON file between the outputs of each child process. However, if there is an error in one of the child process's command lines, then this child process will not produce any JSON output and so the JSON file will have two consecutive separators (commas), which is invalid according to http://jsonlint.com.
This PR provides a partial fix for the problem for parallel mass testing by checking whether a child process has created a non-empty JSON output before adding a separator to the JSON file. It leaves two unresolved problems:
* It does not fix the problem at all for `run_mass_testing()`, where the separator is added before the test with the command line error is run.
* It does not fix the problem for parallel mass testing for the case in which the first child test has a command line error.
started to use the ip parameter to decide where the dns resoultion
takes place (see #739 and #748). --ip=proxy or DNS_VIA_PROXY=true
will mean DNS resolutioni is done by proxy,
furthermore: swapped a few pr_magenta by pr_warning. Generally
testssl.sh should use for warnings a warning function and not
directly a color (we want to be flexible). There are still a few
remainders for fatal() which use bold magenta and thus I haven't
changed yet.
Also html_reserved() is being called also if no html output
is being requested. This could be fixed better probably.
This PR introduces the following changes/improvements to running mass testing in parallel:
* Continuous feedback is provided on the progress of testing, so that testssl.sh doesn't appeared to be frozen, even if it is waiting a long time for a child test to complete. [The feedback text is sent to `stderr` so that it doesn't appear in the log file if the `--logging` option is used.]
* Text sent to `stderr` by a child test is captured and then displayed in context with the appropriate test rather than being displayed at the time the error occurs. [Note that this means that if the `--logfile <logfile>` option is used (with `logfile` being the name of a file), then `logfile` will include both `stdout` and `stderr`.]
* If a test is started but it does not complete (because testssl.sh was stopped or because the test timed out), then a message is displayed indicating that the test didn't finish.
I believe that `run_mass_testing_parallel()` is either ready for use or nearly ready for use. So, I changed the program to use `run_mass_testing_parallel()` rather than `run_mass_testing()` if the `$EXPERIMENTAL` flag is set.
was received, testssl.sh tries 3 times to get memory from the server, If
the server returns different memory it's highly likely vulnerable.
(some more vulnerable devices to test against would be appreciated).
This is the default now -- all other hosts are mostly labled as OK.
Parsing SERVICE should be a little faster and more reliable
Increased needed debug level for output @ parse_tls_serverhello
Sometimes it just does not. In those case also sometimes session resumption
via tickets is supported.
This fixes the output for Session Ticket RFC 5077 and doesn't draw the wrong
conclusion from a missing lifetime hint.
It also tests for ticketbleed first whether there's a session ticket TLS
extension.
When the `--log`, `--logging`, or `--logfile <logfile>` option is being used and testssl.sh is stopped, a "printf: write error: Broken pipe" message tends to appear. From what I can tell, this is a result of the `tee` process being killed before the `cleanup ()` function completes. At the moment, `cleanup ()` doesn't write very much to `stdout`, but if parallel mass testing is performed, then `cleanup ()` may try to write the results of several previously completed tests.
This PR fixes the problem by adding the `-i` option ("ignore interrupt signals") to `tee`.
Note that I have tested this on a Linux desktop and an OS X laptop, but don't have a MS Windows computer on which to test this change.
This PR provides improvements to `run_mass_testing_parallel()`. Currently, `run_mass_testing_parallel()` treats `$MAX_PARALLEL` as the maximum difference between the number of the test whose results were last processed and the number of the most recently started test. This means that test #40 will not be started until the results of test #20 have been processed. I've encountered situations in which tests 21 though 39 have completed, but test #20 is still running, and so no new tests are started.
This PR fixes the problem by checking the status of all running child tests to see if any are complete, rather than just looking at `$NEXT_PARALLEL_TEST_TO_FINISH`. This prevents one slow child test (or a few slow child tests) from slowing up the entire mass testing process.
This PR also changes the basis for determining whether a slow child process should be killed. Rather than waiting `$MAX_WAIT_TEST` seconds from the time that the parent started waiting (which is rather arbitrary), it kills the process if `$MAX_WAIT_TEST` seconds have passed since the child test was started. Given this, and that the above change makes it less likely that a slow child test will slow up the overall testing, I increased `$MAX_WAIT_TEST` from 600 seconds to 1200 seconds.
I added some `debugme` statements that provide feedback on the status of testing, but in non-debug mode there may be a perception issue. If one test (e.g., test #20) is very slow, testssl.sh will not display any results from later tests until the slow test finishes, even though testssl.sh will continue running new tests in the background. The user, seeing no output from testssl.sh for an extended period of time, may think that testssl.sh has frozen, even though it is really just holding back on displaying the later results so that the results will be displayed in the order in which the tests were started.
There is a comment in the `run_client_simulation()` function that says "FIXME: printf formatting would look better, especially if we want a wide option here."
This PR is an attempt at addressing that FIXME and adding a wide option. The proposed wide option prints the same information as the non-wide option, just with the columns aligned. I didn't add any of the additional information that is displayed by other functions in wide mode, since I thought that made the output too wide.
-H is now --heartbleed instead of --headers,
-B is now --breach instead of --heartbleed,
-T is now --ticketbleed (was previously --breach)
bugs fix for run_ccs_injection() where the tls protocols wa not properly passed to the ClientHello
Made use of already determined protocol ( this time only from determine_optimal_proto() ) ==> we shpould use this in run_protocols() too!)
for run_ccs_injection + run_ticketbleed(). For achieving this determine_optimal_proto() needed to be modified so that it adds a protocol
to PROTOS_OFFERED (all_failed is now boolean there)
added two easy functions for converting dec to hex
sockread_fast() is for testing which should make socket erads faster -- albeit it could potentially block the whole thing
`emphasize_stuff_in_headers()` only adds color to the text being printed to the terminal if `$COLOR` is 2. So, the same should be the case for the HTML output.
This PR addresses issue #616, changing `run_cipher_match()` so that only those ciphers that are available are shown, unless the `--show-each` flag has been provided.
It also fixes a problem where the signature algorithm isn't being shown, even if `$SHOW_SIGALGO` is true.
This PR just addresses some places where quotes need to be used to avoid word splitting in case the referenced file, or path to the file, contains space characters.
The previous fix did not work if testssl.sh was found via `$PATH`. This seems to work in all cases. If testssl.sh is found via `$PATH` or if the command line includes a path, then `which` returns a non-empty response; otherwise, `$0` does not include any path, but one needs to be provided, so `$RUN_DIR/$PROG_NAME` is used.
Using "$0" as the name of the executable seems to work as long as "$0" contains a directory name (e.g, "workingfiles/testssl.sh"), but not if it is just the name of the executable (e.g., "testssl.sh"). Specifying "$RUN_DIR/$PROG_NAME" seems to work in both cases, since if "$0" doesn't contain any path information, `$RUN_DIR` is `.`
Use the suggestion "If you want to print the argument list as close as possible to what the user probably entered" from http://stackoverflow.com/questions/10835933/preserve-quotes-in-bash-arguments to create `$CMDLINE` and to print the command lines in `run_mass_testing()` and `run_mass_testing_parallel()`.
This PR addresses issue #702. Rather than create the command line for each child process in `run_mass_testing()` as a string, it creates it as an array, with each argument being a separate element in the array. This was done based on http://mywiki.wooledge.org/BashFAQ/050.
The printing of each child's command line done based on http://stackoverflow.com/questions/10835933/preserve-quotes-in-bash-arguments.
The `$CMDLINE` string remains unchanged, even though it isn't entirely "correct," since http://jsonlint.com/ complains if the "Invocation:" string contains backslashes.