Since some OpenSSL binaries, namely Gentoo’s, don’t support bracketed
IPv6 addresses but unbracketed ones, specified as the -connect option,
the UNBRACKETED_IPV6 environment variable can be set to true for
disabling the automatic addition of brackets around IPv6 addresses on
such platforms.
While standard OpenSSL requires the literal IPv6 address enclosed
in [brackets], standard DNS lookup tools don’t support the additional
characters. Before making reverse PTR lookups, these brackets have to
be removed from the IPv6 addresses.
When run_rc4() is run with the "--show-each" option, but without the "--wide" option, a list of all RC4 ciphers is printed, without any distinction between those that are supported by the server and those that are not. This is the same issue I noted in #332 for run_pfs().
In run_pfs(), the displayed output was corrected, but all ciphers were still being added to $pfs_ciphers, so the list of supported PFS ciphers sent to fileout() was incorrect.
This PR fixes both issues.
When certificate_info() is trying to determine what type of public key the server has so that it can determine whether the key size is acceptable, it sometimes looks at $cert_sig_algo rather than $cert_key_algo. This PR fixes that and also adds support for DSA public keys.
The dec2hex() was actually converting from hex to decimal. Since it was only being used in one place, and wasn't really needed there, I just deleted it.
Revised parse_tls_serverhello() to more carefully check the response for errors, and to provide for more flexibility (e.g., if handshake messages are split across multiple fragments).
The new test in PR #346 sends a TLSv1.4 ClientHello, so socksend_tls_clienthello() needs to include the signature algorithms extension if $tls_low_byte >= 3 rather than only if it is equal to 3.
One server I am testing responds to an SSLv3 ClientHello with TLSv1.2. If tls_sockets is being used, then testssl.sh responds with "#FIXME: downgraded. still missing a test case here." This PR fixes that, and in general checks the responses in run_protocols() more closely.
If tls_sockets is being used and the connection fails even though the server supports an earlier version of SSL/TLS, then it flags an error. If tls_sockets returns 2, then it verifies that $DETECTED_TLS_VERSION is equal to the highest version number supported by the server (that is also less than the version number in the ClientHello).
In addition, in order to test servers' support for version negotiation, it adds a new test that sends a TLSv1.4 ClientHello and verifies that the server responds with the highest version number that it supports. (This test only runs if both $using_sockets and $EXPERIMENTAL are true and server actually supports some version of SSL/TLS other than SSLv2.)
Changed to only include the signature algorithms extension for TLSv1.2, since RFC 5246 says:
Note: this extension is not meaningful for TLS versions prior to 1.2.
Clients MUST NOT offer it if they are offering prior versions.
However, even if clients do offer it, the rules specified in [TLSEXT]
require servers to ignore extensions they do not understand.
Inclusion of the extension for TLS 1.1 didn't seem to cause any harm, but it seems better to follow the RFC and not include it for TLSv1.0 or TLSv1.1.
RFC 7685 notes that there is at least one TLS implementation that hangs if the client sends a ClientHello with a TLSCiphertext.length between 256 and 511 bytes, and so the padding extension was defined in order to get around this bug. (OpenSSL s_client includes this extension when the -bugs option is used.) So, I changed socksend_tls_clienthello() to include the padding extension if the CLientHello would have a length between 256 and 511 bytes, making the padding extension just large enough to make the ClientHello 512 bytes.
I also fixed a typo (a missing "0x") in the check for whether any ECC ciphers are included in the Client Hello.