mirror of
https://github.com/cheat/cheat.git
synced 2024-11-22 22:11:35 +01:00
85 lines
2.2 KiB
Go
85 lines
2.2 KiB
Go
|
// Package math provides some utility functions for big integers.
|
||
|
package math
|
||
|
|
||
|
import "math/big"
|
||
|
|
||
|
// SignedDigit obtains the signed-digit recoding of n and returns a list L of
|
||
|
// digits such that n = sum( L[i]*2^(i*(w-1)) ), and each L[i] is an odd number
|
||
|
// in the set {±1, ±3, ..., ±2^(w-1)-1}. The third parameter ensures that the
|
||
|
// output has ceil(l/(w-1)) digits.
|
||
|
//
|
||
|
// Restrictions:
|
||
|
// - n is odd and n > 0.
|
||
|
// - 1 < w < 32.
|
||
|
// - l >= bit length of n.
|
||
|
//
|
||
|
// References:
|
||
|
// - Alg.6 in "Exponent Recoding and Regular Exponentiation Algorithms"
|
||
|
// by Joye-Tunstall. http://doi.org/10.1007/978-3-642-02384-2_21
|
||
|
// - Alg.6 in "Selecting Elliptic Curves for Cryptography: An Efficiency and
|
||
|
// Security Analysis" by Bos et al. http://doi.org/10.1007/s13389-015-0097-y
|
||
|
func SignedDigit(n *big.Int, w, l uint) []int32 {
|
||
|
if n.Sign() <= 0 || n.Bit(0) == 0 {
|
||
|
panic("n must be non-zero, odd, and positive")
|
||
|
}
|
||
|
if w <= 1 || w >= 32 {
|
||
|
panic("Verify that 1 < w < 32")
|
||
|
}
|
||
|
if uint(n.BitLen()) > l {
|
||
|
panic("n is too big to fit in l digits")
|
||
|
}
|
||
|
lenN := (l + (w - 1) - 1) / (w - 1) // ceil(l/(w-1))
|
||
|
L := make([]int32, lenN+1)
|
||
|
var k, v big.Int
|
||
|
k.Set(n)
|
||
|
|
||
|
var i uint
|
||
|
for i = 0; i < lenN; i++ {
|
||
|
words := k.Bits()
|
||
|
value := int32(words[0] & ((1 << w) - 1))
|
||
|
value -= int32(1) << (w - 1)
|
||
|
L[i] = value
|
||
|
v.SetInt64(int64(value))
|
||
|
k.Sub(&k, &v)
|
||
|
k.Rsh(&k, w-1)
|
||
|
}
|
||
|
L[i] = int32(k.Int64())
|
||
|
return L
|
||
|
}
|
||
|
|
||
|
// OmegaNAF obtains the window-w Non-Adjacent Form of a positive number n and
|
||
|
// 1 < w < 32. The returned slice L holds n = sum( L[i]*2^i ).
|
||
|
//
|
||
|
// Reference:
|
||
|
// - Alg.9 "Efficient arithmetic on Koblitz curves" by Solinas.
|
||
|
// http://doi.org/10.1023/A:1008306223194
|
||
|
func OmegaNAF(n *big.Int, w uint) (L []int32) {
|
||
|
if n.Sign() < 0 {
|
||
|
panic("n must be positive")
|
||
|
}
|
||
|
if w <= 1 || w >= 32 {
|
||
|
panic("Verify that 1 < w < 32")
|
||
|
}
|
||
|
|
||
|
L = make([]int32, n.BitLen()+1)
|
||
|
var k, v big.Int
|
||
|
k.Set(n)
|
||
|
|
||
|
i := 0
|
||
|
for ; k.Sign() > 0; i++ {
|
||
|
value := int32(0)
|
||
|
if k.Bit(0) == 1 {
|
||
|
words := k.Bits()
|
||
|
value = int32(words[0] & ((1 << w) - 1))
|
||
|
if value >= (int32(1) << (w - 1)) {
|
||
|
value -= int32(1) << w
|
||
|
}
|
||
|
v.SetInt64(int64(value))
|
||
|
k.Sub(&k, &v)
|
||
|
}
|
||
|
L[i] = value
|
||
|
k.Rsh(&k, 1)
|
||
|
}
|
||
|
return L[:i]
|
||
|
}
|