chore(deps): upgrade dependencies

Upgrade all dependencies to newest versions.
This commit is contained in:
Christopher Allen Lane
2023-12-13 08:29:02 -05:00
parent 0d9c92c8c0
commit 95a4e31b6c
769 changed files with 28936 additions and 12954 deletions

View File

@ -3,7 +3,8 @@
// license that can be found in the LICENSE file.
// Package s2k implements the various OpenPGP string-to-key transforms as
// specified in RFC 4800 section 3.7.1.
// specified in RFC 4800 section 3.7.1, and Argon2 specified in
// draft-ietf-openpgp-crypto-refresh-08 section 3.7.1.4.
package s2k // import "github.com/ProtonMail/go-crypto/openpgp/s2k"
import (
@ -14,70 +15,47 @@ import (
"github.com/ProtonMail/go-crypto/openpgp/errors"
"github.com/ProtonMail/go-crypto/openpgp/internal/algorithm"
"golang.org/x/crypto/argon2"
)
// Config collects configuration parameters for s2k key-stretching
// transformations. A nil *Config is valid and results in all default
// values. Currently, Config is used only by the Serialize function in
// this package.
type Config struct {
// S2KMode is the mode of s2k function.
// It can be 0 (simple), 1(salted), 3(iterated)
// 2(reserved) 100-110(private/experimental).
S2KMode uint8
// Hash is the default hash function to be used. If
// nil, SHA256 is used.
Hash crypto.Hash
// S2KCount is only used for symmetric encryption. It
// determines the strength of the passphrase stretching when
// the said passphrase is hashed to produce a key. S2KCount
// should be between 65536 and 65011712, inclusive. If Config
// is nil or S2KCount is 0, the value 16777216 used. Not all
// values in the above range can be represented. S2KCount will
// be rounded up to the next representable value if it cannot
// be encoded exactly. See RFC 4880 Section 3.7.1.3.
S2KCount int
}
type Mode uint8
// Defines the default S2KMode constants
//
// 0 (simple), 1(salted), 3(iterated), 4(argon2)
const (
SimpleS2K Mode = 0
SaltedS2K Mode = 1
IteratedSaltedS2K Mode = 3
Argon2S2K Mode = 4
GnuS2K Mode = 101
)
const Argon2SaltSize int = 16
// Params contains all the parameters of the s2k packet
type Params struct {
// mode is the mode of s2k function.
// It can be 0 (simple), 1(salted), 3(iterated)
// 2(reserved) 100-110(private/experimental).
mode uint8
mode Mode
// hashId is the ID of the hash function used in any of the modes
hashId byte
// salt is a byte array to use as a salt in hashing process
salt []byte
// salt is a byte array to use as a salt in hashing process or argon2
saltBytes [Argon2SaltSize]byte
// countByte is used to determine how many rounds of hashing are to
// be performed in s2k mode 3. See RFC 4880 Section 3.7.1.3.
countByte byte
}
func (c *Config) hash() crypto.Hash {
if c == nil || uint(c.Hash) == 0 {
return crypto.SHA256
}
return c.Hash
}
// EncodedCount get encoded count
func (c *Config) EncodedCount() uint8 {
if c == nil || c.S2KCount == 0 {
return 224 // The common case. Corresponding to 16777216
}
i := c.S2KCount
switch {
case i < 65536:
i = 65536
case i > 65011712:
i = 65011712
}
return encodeCount(i)
// passes is a parameter in Argon2 to determine the number of iterations
// See RFC the crypto refresh Section 3.7.1.4.
passes byte
// parallelism is a parameter in Argon2 to determine the degree of paralellism
// See RFC the crypto refresh Section 3.7.1.4.
parallelism byte
// memoryExp is a parameter in Argon2 to determine the memory usage
// i.e., 2 ** memoryExp kibibytes
// See RFC the crypto refresh Section 3.7.1.4.
memoryExp byte
}
// encodeCount converts an iterative "count" in the range 1024 to
@ -106,6 +84,31 @@ func decodeCount(c uint8) int {
return (16 + int(c&15)) << (uint32(c>>4) + 6)
}
// encodeMemory converts the Argon2 "memory" in the range parallelism*8 to
// 2**31, inclusive, to an encoded memory. The return value is the
// octet that is actually stored in the GPG file. encodeMemory panics
// if is not in the above range
// See OpenPGP crypto refresh Section 3.7.1.4.
func encodeMemory(memory uint32, parallelism uint8) uint8 {
if memory < (8 * uint32(parallelism)) || memory > uint32(2147483648) {
panic("Memory argument memory is outside the required range")
}
for exp := 3; exp < 31; exp++ {
compare := decodeMemory(uint8(exp))
if compare >= memory {
return uint8(exp)
}
}
return 31
}
// decodeMemory computes the decoded memory in kibibytes as 2**memoryExponent
func decodeMemory(memoryExponent uint8) uint32 {
return uint32(1) << memoryExponent
}
// Simple writes to out the result of computing the Simple S2K function (RFC
// 4880, section 3.7.1.1) using the given hash and input passphrase.
func Simple(out []byte, h hash.Hash, in []byte) {
@ -169,25 +172,53 @@ func Iterated(out []byte, h hash.Hash, in []byte, salt []byte, count int) {
}
}
// Argon2 writes to out the key derived from the password (in) with the Argon2
// function (the crypto refresh, section 3.7.1.4)
func Argon2(out []byte, in []byte, salt []byte, passes uint8, paralellism uint8, memoryExp uint8) {
key := argon2.IDKey(in, salt, uint32(passes), decodeMemory(memoryExp), paralellism, uint32(len(out)))
copy(out[:], key)
}
// Generate generates valid parameters from given configuration.
// It will enforce salted + hashed s2k method
// It will enforce the Iterated and Salted or Argon2 S2K method.
func Generate(rand io.Reader, c *Config) (*Params, error) {
hashId, ok := HashToHashId(c.Hash)
if !ok {
return nil, errors.UnsupportedError("no such hash")
}
var params *Params
if c != nil && c.Mode() == Argon2S2K {
// handle Argon2 case
argonConfig := c.Argon2()
params = &Params{
mode: Argon2S2K,
passes: argonConfig.Passes(),
parallelism: argonConfig.Parallelism(),
memoryExp: argonConfig.EncodedMemory(),
}
} else if c != nil && c.PassphraseIsHighEntropy && c.Mode() == SaltedS2K { // Allow SaltedS2K if PassphraseIsHighEntropy
hashId, ok := algorithm.HashToHashId(c.hash())
if !ok {
return nil, errors.UnsupportedError("no such hash")
}
params := &Params{
mode: 3, // Enforce iterared + salted method
hashId: hashId,
salt: make([]byte, 8),
countByte: c.EncodedCount(),
params = &Params{
mode: SaltedS2K,
hashId: hashId,
}
} else { // Enforce IteratedSaltedS2K method otherwise
hashId, ok := algorithm.HashToHashId(c.hash())
if !ok {
return nil, errors.UnsupportedError("no such hash")
}
if c != nil {
c.S2KMode = IteratedSaltedS2K
}
params = &Params{
mode: IteratedSaltedS2K,
hashId: hashId,
countByte: c.EncodedCount(),
}
}
if _, err := io.ReadFull(rand, params.salt); err != nil {
if _, err := io.ReadFull(rand, params.salt()); err != nil {
return nil, err
}
return params, nil
}
@ -207,45 +238,60 @@ func Parse(r io.Reader) (f func(out, in []byte), err error) {
// ParseIntoParams reads a binary specification for a string-to-key
// transformation from r and returns a struct describing the s2k parameters.
func ParseIntoParams(r io.Reader) (params *Params, err error) {
var buf [9]byte
var buf [Argon2SaltSize + 3]byte
_, err = io.ReadFull(r, buf[:2])
_, err = io.ReadFull(r, buf[:1])
if err != nil {
return
}
params = &Params{
mode: buf[0],
hashId: buf[1],
mode: Mode(buf[0]),
}
switch params.mode {
case 0:
return params, nil
case 1:
_, err = io.ReadFull(r, buf[:8])
case SimpleS2K:
_, err = io.ReadFull(r, buf[:1])
if err != nil {
return nil, err
}
params.salt = buf[:8]
params.hashId = buf[0]
return params, nil
case 3:
case SaltedS2K:
_, err = io.ReadFull(r, buf[:9])
if err != nil {
return nil, err
}
params.salt = buf[:8]
params.countByte = buf[8]
params.hashId = buf[0]
copy(params.salt(), buf[1:9])
return params, nil
case 101:
// This is a GNU extension. See
// https://git.gnupg.org/cgi-bin/gitweb.cgi?p=gnupg.git;a=blob;f=doc/DETAILS;h=fe55ae16ab4e26d8356dc574c9e8bc935e71aef1;hb=23191d7851eae2217ecdac6484349849a24fd94a#l1109
if _, err = io.ReadFull(r, buf[:4]); err != nil {
case IteratedSaltedS2K:
_, err = io.ReadFull(r, buf[:10])
if err != nil {
return nil, err
}
if buf[0] == 'G' && buf[1] == 'N' && buf[2] == 'U' && buf[3] == 1 {
params.hashId = buf[0]
copy(params.salt(), buf[1:9])
params.countByte = buf[9]
return params, nil
case Argon2S2K:
_, err = io.ReadFull(r, buf[:Argon2SaltSize+3])
if err != nil {
return nil, err
}
copy(params.salt(), buf[:Argon2SaltSize])
params.passes = buf[Argon2SaltSize]
params.parallelism = buf[Argon2SaltSize+1]
params.memoryExp = buf[Argon2SaltSize+2]
return params, nil
case GnuS2K:
// This is a GNU extension. See
// https://git.gnupg.org/cgi-bin/gitweb.cgi?p=gnupg.git;a=blob;f=doc/DETAILS;h=fe55ae16ab4e26d8356dc574c9e8bc935e71aef1;hb=23191d7851eae2217ecdac6484349849a24fd94a#l1109
if _, err = io.ReadFull(r, buf[:5]); err != nil {
return nil, err
}
params.hashId = buf[0]
if buf[1] == 'G' && buf[2] == 'N' && buf[3] == 'U' && buf[4] == 1 {
return params, nil
}
return nil, errors.UnsupportedError("GNU S2K extension")
@ -255,39 +301,56 @@ func ParseIntoParams(r io.Reader) (params *Params, err error) {
}
func (params *Params) Dummy() bool {
return params != nil && params.mode == 101
return params != nil && params.mode == GnuS2K
}
func (params *Params) salt() []byte {
switch params.mode {
case SaltedS2K, IteratedSaltedS2K: return params.saltBytes[:8]
case Argon2S2K: return params.saltBytes[:Argon2SaltSize]
default: return nil
}
}
func (params *Params) Function() (f func(out, in []byte), err error) {
if params.Dummy() {
return nil, errors.ErrDummyPrivateKey("dummy key found")
}
hashObj, ok := HashIdToHash(params.hashId)
if !ok {
return nil, errors.UnsupportedError("hash for S2K function: " + strconv.Itoa(int(params.hashId)))
}
if !hashObj.Available() {
return nil, errors.UnsupportedError("hash not available: " + strconv.Itoa(int(hashObj)))
var hashObj crypto.Hash
if params.mode != Argon2S2K {
var ok bool
hashObj, ok = algorithm.HashIdToHashWithSha1(params.hashId)
if !ok {
return nil, errors.UnsupportedError("hash for S2K function: " + strconv.Itoa(int(params.hashId)))
}
if !hashObj.Available() {
return nil, errors.UnsupportedError("hash not available: " + strconv.Itoa(int(hashObj)))
}
}
switch params.mode {
case 0:
case SimpleS2K:
f := func(out, in []byte) {
Simple(out, hashObj.New(), in)
}
return f, nil
case 1:
case SaltedS2K:
f := func(out, in []byte) {
Salted(out, hashObj.New(), in, params.salt)
Salted(out, hashObj.New(), in, params.salt())
}
return f, nil
case 3:
case IteratedSaltedS2K:
f := func(out, in []byte) {
Iterated(out, hashObj.New(), in, params.salt, decodeCount(params.countByte))
Iterated(out, hashObj.New(), in, params.salt(), decodeCount(params.countByte))
}
return f, nil
case Argon2S2K:
f := func(out, in []byte) {
Argon2(out, in, params.salt(), params.passes, params.parallelism, params.memoryExp)
}
return f, nil
}
@ -295,23 +358,28 @@ func (params *Params) Function() (f func(out, in []byte), err error) {
}
func (params *Params) Serialize(w io.Writer) (err error) {
if _, err = w.Write([]byte{params.mode}); err != nil {
if _, err = w.Write([]byte{uint8(params.mode)}); err != nil {
return
}
if _, err = w.Write([]byte{params.hashId}); err != nil {
return
if params.mode != Argon2S2K {
if _, err = w.Write([]byte{params.hashId}); err != nil {
return
}
}
if params.Dummy() {
_, err = w.Write(append([]byte("GNU"), 1))
return
}
if params.mode > 0 {
if _, err = w.Write(params.salt); err != nil {
if _, err = w.Write(params.salt()); err != nil {
return
}
if params.mode == 3 {
if params.mode == IteratedSaltedS2K {
_, err = w.Write([]byte{params.countByte})
}
if params.mode == Argon2S2K {
_, err = w.Write([]byte{params.passes, params.parallelism, params.memoryExp})
}
}
return
}
@ -337,31 +405,3 @@ func Serialize(w io.Writer, key []byte, rand io.Reader, passphrase []byte, c *Co
f(key, passphrase)
return nil
}
// HashIdToHash returns a crypto.Hash which corresponds to the given OpenPGP
// hash id.
func HashIdToHash(id byte) (h crypto.Hash, ok bool) {
if hash, ok := algorithm.HashById[id]; ok {
return hash.HashFunc(), true
}
return 0, false
}
// HashIdToString returns the name of the hash function corresponding to the
// given OpenPGP hash id.
func HashIdToString(id byte) (name string, ok bool) {
if hash, ok := algorithm.HashById[id]; ok {
return hash.String(), true
}
return "", false
}
// HashIdToHash returns an OpenPGP hash id which corresponds the given Hash.
func HashToHashId(h crypto.Hash) (id byte, ok bool) {
for id, hash := range algorithm.HashById {
if hash.HashFunc() == h {
return id, true
}
}
return 0, false
}