mirror of
https://github.com/cheat/cheat.git
synced 2025-12-20 14:12:05 +01:00
chore(deps): upgrade dependencies
Upgrade all dependencies to newest versions.
This commit is contained in:
1
vendor/github.com/cloudflare/circl/math/fp25519/fp_amd64.h
generated
vendored
1
vendor/github.com/cloudflare/circl/math/fp25519/fp_amd64.h
generated
vendored
@@ -99,6 +99,7 @@
|
||||
// Uses: AX, DX, R8-R15, FLAGS
|
||||
// Instr: x86_64, bmi2, adx
|
||||
#define integerMulAdx(z,x,y) \
|
||||
MOVL $0,R15; \
|
||||
MOVQ 0+y, DX; XORL AX, AX; \
|
||||
MULXQ 0+x, AX, R8; MOVQ AX, 0+z; \
|
||||
MULXQ 8+x, AX, R9; ADCXQ AX, R8; \
|
||||
|
||||
1
vendor/github.com/cloudflare/circl/math/fp448/fp_amd64.h
generated
vendored
1
vendor/github.com/cloudflare/circl/math/fp448/fp_amd64.h
generated
vendored
@@ -158,6 +158,7 @@
|
||||
// Uses: AX, DX, R8-R15, FLAGS
|
||||
// Instr: x86_64, bmi2, adx
|
||||
#define integerMulAdx(z,x,y) \
|
||||
MOVL $0,R15; \
|
||||
MOVQ 0+y, DX; XORL AX, AX; MOVQ $0, R8; \
|
||||
MULXQ 0+x, AX, R9; MOVQ AX, 0+z; \
|
||||
MULXQ 8+x, AX, R10; ADCXQ AX, R9; \
|
||||
|
||||
11
vendor/github.com/cloudflare/circl/math/fp448/fuzzer.go
generated
vendored
11
vendor/github.com/cloudflare/circl/math/fp448/fuzzer.go
generated
vendored
@@ -2,11 +2,12 @@
|
||||
// +build gofuzz
|
||||
|
||||
// How to run the fuzzer:
|
||||
// $ go get -u github.com/dvyukov/go-fuzz/go-fuzz
|
||||
// $ go get -u github.com/dvyukov/go-fuzz/go-fuzz-build
|
||||
// $ go-fuzz-build -libfuzzer -func FuzzReduction -o lib.a
|
||||
// $ clang -fsanitize=fuzzer lib.a -o fu.exe
|
||||
// $ ./fu.exe
|
||||
//
|
||||
// $ go get -u github.com/dvyukov/go-fuzz/go-fuzz
|
||||
// $ go get -u github.com/dvyukov/go-fuzz/go-fuzz-build
|
||||
// $ go-fuzz-build -libfuzzer -func FuzzReduction -o lib.a
|
||||
// $ clang -fsanitize=fuzzer lib.a -o fu.exe
|
||||
// $ ./fu.exe
|
||||
package fp448
|
||||
|
||||
import (
|
||||
|
||||
4
vendor/github.com/cloudflare/circl/math/mlsbset/mlsbset.go
generated
vendored
4
vendor/github.com/cloudflare/circl/math/mlsbset/mlsbset.go
generated
vendored
@@ -2,8 +2,8 @@
|
||||
//
|
||||
// References: "Efficient and secure algorithms for GLV-based scalar
|
||||
// multiplication and their implementation on GLV–GLS curves" by (Faz-Hernandez et al.)
|
||||
// - https://doi.org/10.1007/s13389-014-0085-7
|
||||
// - https://eprint.iacr.org/2013/158
|
||||
// - https://doi.org/10.1007/s13389-014-0085-7
|
||||
// - https://eprint.iacr.org/2013/158
|
||||
package mlsbset
|
||||
|
||||
import (
|
||||
|
||||
34
vendor/github.com/cloudflare/circl/math/primes.go
generated
vendored
Normal file
34
vendor/github.com/cloudflare/circl/math/primes.go
generated
vendored
Normal file
@@ -0,0 +1,34 @@
|
||||
package math
|
||||
|
||||
import (
|
||||
"crypto/rand"
|
||||
"io"
|
||||
"math/big"
|
||||
)
|
||||
|
||||
// IsSafePrime reports whether p is (probably) a safe prime.
|
||||
// The prime p=2*q+1 is safe prime if both p and q are primes.
|
||||
// Note that ProbablyPrime is not suitable for judging primes
|
||||
// that an adversary may have crafted to fool the test.
|
||||
func IsSafePrime(p *big.Int) bool {
|
||||
pdiv2 := new(big.Int).Rsh(p, 1)
|
||||
return p.ProbablyPrime(20) && pdiv2.ProbablyPrime(20)
|
||||
}
|
||||
|
||||
// SafePrime returns a number of the given bit length that is a safe prime with high probability.
|
||||
// The number returned p=2*q+1 is a safe prime if both p and q are primes.
|
||||
// SafePrime will return error for any error returned by rand.Read or if bits < 2.
|
||||
func SafePrime(random io.Reader, bits int) (*big.Int, error) {
|
||||
one := big.NewInt(1)
|
||||
p := new(big.Int)
|
||||
for {
|
||||
q, err := rand.Prime(random, bits-1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
p.Lsh(q, 1).Add(p, one)
|
||||
if p.ProbablyPrime(20) {
|
||||
return p, nil
|
||||
}
|
||||
}
|
||||
}
|
||||
18
vendor/github.com/cloudflare/circl/math/wnaf.go
generated
vendored
18
vendor/github.com/cloudflare/circl/math/wnaf.go
generated
vendored
@@ -9,15 +9,15 @@ import "math/big"
|
||||
// output has ceil(l/(w-1)) digits.
|
||||
//
|
||||
// Restrictions:
|
||||
// - n is odd and n > 0.
|
||||
// - 1 < w < 32.
|
||||
// - l >= bit length of n.
|
||||
// - n is odd and n > 0.
|
||||
// - 1 < w < 32.
|
||||
// - l >= bit length of n.
|
||||
//
|
||||
// References:
|
||||
// - Alg.6 in "Exponent Recoding and Regular Exponentiation Algorithms"
|
||||
// by Joye-Tunstall. http://doi.org/10.1007/978-3-642-02384-2_21
|
||||
// - Alg.6 in "Selecting Elliptic Curves for Cryptography: An Efficiency and
|
||||
// Security Analysis" by Bos et al. http://doi.org/10.1007/s13389-015-0097-y
|
||||
// - Alg.6 in "Exponent Recoding and Regular Exponentiation Algorithms"
|
||||
// by Joye-Tunstall. http://doi.org/10.1007/978-3-642-02384-2_21
|
||||
// - Alg.6 in "Selecting Elliptic Curves for Cryptography: An Efficiency and
|
||||
// Security Analysis" by Bos et al. http://doi.org/10.1007/s13389-015-0097-y
|
||||
func SignedDigit(n *big.Int, w, l uint) []int32 {
|
||||
if n.Sign() <= 0 || n.Bit(0) == 0 {
|
||||
panic("n must be non-zero, odd, and positive")
|
||||
@@ -51,8 +51,8 @@ func SignedDigit(n *big.Int, w, l uint) []int32 {
|
||||
// 1 < w < 32. The returned slice L holds n = sum( L[i]*2^i ).
|
||||
//
|
||||
// Reference:
|
||||
// - Alg.9 "Efficient arithmetic on Koblitz curves" by Solinas.
|
||||
// http://doi.org/10.1023/A:1008306223194
|
||||
// - Alg.9 "Efficient arithmetic on Koblitz curves" by Solinas.
|
||||
// http://doi.org/10.1023/A:1008306223194
|
||||
func OmegaNAF(n *big.Int, w uint) (L []int32) {
|
||||
if n.Sign() < 0 {
|
||||
panic("n must be positive")
|
||||
|
||||
Reference in New Issue
Block a user