cheat/vendor/github.com/ProtonMail/go-crypto/openpgp/s2k/s2k.go
Christopher Allen Lane 95a4e31b6c chore(deps): upgrade dependencies
Upgrade all dependencies to newest versions.
2023-12-13 08:29:02 -05:00

408 lines
11 KiB
Go

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package s2k implements the various OpenPGP string-to-key transforms as
// specified in RFC 4800 section 3.7.1, and Argon2 specified in
// draft-ietf-openpgp-crypto-refresh-08 section 3.7.1.4.
package s2k // import "github.com/ProtonMail/go-crypto/openpgp/s2k"
import (
"crypto"
"hash"
"io"
"strconv"
"github.com/ProtonMail/go-crypto/openpgp/errors"
"github.com/ProtonMail/go-crypto/openpgp/internal/algorithm"
"golang.org/x/crypto/argon2"
)
type Mode uint8
// Defines the default S2KMode constants
//
// 0 (simple), 1(salted), 3(iterated), 4(argon2)
const (
SimpleS2K Mode = 0
SaltedS2K Mode = 1
IteratedSaltedS2K Mode = 3
Argon2S2K Mode = 4
GnuS2K Mode = 101
)
const Argon2SaltSize int = 16
// Params contains all the parameters of the s2k packet
type Params struct {
// mode is the mode of s2k function.
// It can be 0 (simple), 1(salted), 3(iterated)
// 2(reserved) 100-110(private/experimental).
mode Mode
// hashId is the ID of the hash function used in any of the modes
hashId byte
// salt is a byte array to use as a salt in hashing process or argon2
saltBytes [Argon2SaltSize]byte
// countByte is used to determine how many rounds of hashing are to
// be performed in s2k mode 3. See RFC 4880 Section 3.7.1.3.
countByte byte
// passes is a parameter in Argon2 to determine the number of iterations
// See RFC the crypto refresh Section 3.7.1.4.
passes byte
// parallelism is a parameter in Argon2 to determine the degree of paralellism
// See RFC the crypto refresh Section 3.7.1.4.
parallelism byte
// memoryExp is a parameter in Argon2 to determine the memory usage
// i.e., 2 ** memoryExp kibibytes
// See RFC the crypto refresh Section 3.7.1.4.
memoryExp byte
}
// encodeCount converts an iterative "count" in the range 1024 to
// 65011712, inclusive, to an encoded count. The return value is the
// octet that is actually stored in the GPG file. encodeCount panics
// if i is not in the above range (encodedCount above takes care to
// pass i in the correct range). See RFC 4880 Section 3.7.7.1.
func encodeCount(i int) uint8 {
if i < 65536 || i > 65011712 {
panic("count arg i outside the required range")
}
for encoded := 96; encoded < 256; encoded++ {
count := decodeCount(uint8(encoded))
if count >= i {
return uint8(encoded)
}
}
return 255
}
// decodeCount returns the s2k mode 3 iterative "count" corresponding to
// the encoded octet c.
func decodeCount(c uint8) int {
return (16 + int(c&15)) << (uint32(c>>4) + 6)
}
// encodeMemory converts the Argon2 "memory" in the range parallelism*8 to
// 2**31, inclusive, to an encoded memory. The return value is the
// octet that is actually stored in the GPG file. encodeMemory panics
// if is not in the above range
// See OpenPGP crypto refresh Section 3.7.1.4.
func encodeMemory(memory uint32, parallelism uint8) uint8 {
if memory < (8 * uint32(parallelism)) || memory > uint32(2147483648) {
panic("Memory argument memory is outside the required range")
}
for exp := 3; exp < 31; exp++ {
compare := decodeMemory(uint8(exp))
if compare >= memory {
return uint8(exp)
}
}
return 31
}
// decodeMemory computes the decoded memory in kibibytes as 2**memoryExponent
func decodeMemory(memoryExponent uint8) uint32 {
return uint32(1) << memoryExponent
}
// Simple writes to out the result of computing the Simple S2K function (RFC
// 4880, section 3.7.1.1) using the given hash and input passphrase.
func Simple(out []byte, h hash.Hash, in []byte) {
Salted(out, h, in, nil)
}
var zero [1]byte
// Salted writes to out the result of computing the Salted S2K function (RFC
// 4880, section 3.7.1.2) using the given hash, input passphrase and salt.
func Salted(out []byte, h hash.Hash, in []byte, salt []byte) {
done := 0
var digest []byte
for i := 0; done < len(out); i++ {
h.Reset()
for j := 0; j < i; j++ {
h.Write(zero[:])
}
h.Write(salt)
h.Write(in)
digest = h.Sum(digest[:0])
n := copy(out[done:], digest)
done += n
}
}
// Iterated writes to out the result of computing the Iterated and Salted S2K
// function (RFC 4880, section 3.7.1.3) using the given hash, input passphrase,
// salt and iteration count.
func Iterated(out []byte, h hash.Hash, in []byte, salt []byte, count int) {
combined := make([]byte, len(in)+len(salt))
copy(combined, salt)
copy(combined[len(salt):], in)
if count < len(combined) {
count = len(combined)
}
done := 0
var digest []byte
for i := 0; done < len(out); i++ {
h.Reset()
for j := 0; j < i; j++ {
h.Write(zero[:])
}
written := 0
for written < count {
if written+len(combined) > count {
todo := count - written
h.Write(combined[:todo])
written = count
} else {
h.Write(combined)
written += len(combined)
}
}
digest = h.Sum(digest[:0])
n := copy(out[done:], digest)
done += n
}
}
// Argon2 writes to out the key derived from the password (in) with the Argon2
// function (the crypto refresh, section 3.7.1.4)
func Argon2(out []byte, in []byte, salt []byte, passes uint8, paralellism uint8, memoryExp uint8) {
key := argon2.IDKey(in, salt, uint32(passes), decodeMemory(memoryExp), paralellism, uint32(len(out)))
copy(out[:], key)
}
// Generate generates valid parameters from given configuration.
// It will enforce the Iterated and Salted or Argon2 S2K method.
func Generate(rand io.Reader, c *Config) (*Params, error) {
var params *Params
if c != nil && c.Mode() == Argon2S2K {
// handle Argon2 case
argonConfig := c.Argon2()
params = &Params{
mode: Argon2S2K,
passes: argonConfig.Passes(),
parallelism: argonConfig.Parallelism(),
memoryExp: argonConfig.EncodedMemory(),
}
} else if c != nil && c.PassphraseIsHighEntropy && c.Mode() == SaltedS2K { // Allow SaltedS2K if PassphraseIsHighEntropy
hashId, ok := algorithm.HashToHashId(c.hash())
if !ok {
return nil, errors.UnsupportedError("no such hash")
}
params = &Params{
mode: SaltedS2K,
hashId: hashId,
}
} else { // Enforce IteratedSaltedS2K method otherwise
hashId, ok := algorithm.HashToHashId(c.hash())
if !ok {
return nil, errors.UnsupportedError("no such hash")
}
if c != nil {
c.S2KMode = IteratedSaltedS2K
}
params = &Params{
mode: IteratedSaltedS2K,
hashId: hashId,
countByte: c.EncodedCount(),
}
}
if _, err := io.ReadFull(rand, params.salt()); err != nil {
return nil, err
}
return params, nil
}
// Parse reads a binary specification for a string-to-key transformation from r
// and returns a function which performs that transform. If the S2K is a special
// GNU extension that indicates that the private key is missing, then the error
// returned is errors.ErrDummyPrivateKey.
func Parse(r io.Reader) (f func(out, in []byte), err error) {
params, err := ParseIntoParams(r)
if err != nil {
return nil, err
}
return params.Function()
}
// ParseIntoParams reads a binary specification for a string-to-key
// transformation from r and returns a struct describing the s2k parameters.
func ParseIntoParams(r io.Reader) (params *Params, err error) {
var buf [Argon2SaltSize + 3]byte
_, err = io.ReadFull(r, buf[:1])
if err != nil {
return
}
params = &Params{
mode: Mode(buf[0]),
}
switch params.mode {
case SimpleS2K:
_, err = io.ReadFull(r, buf[:1])
if err != nil {
return nil, err
}
params.hashId = buf[0]
return params, nil
case SaltedS2K:
_, err = io.ReadFull(r, buf[:9])
if err != nil {
return nil, err
}
params.hashId = buf[0]
copy(params.salt(), buf[1:9])
return params, nil
case IteratedSaltedS2K:
_, err = io.ReadFull(r, buf[:10])
if err != nil {
return nil, err
}
params.hashId = buf[0]
copy(params.salt(), buf[1:9])
params.countByte = buf[9]
return params, nil
case Argon2S2K:
_, err = io.ReadFull(r, buf[:Argon2SaltSize+3])
if err != nil {
return nil, err
}
copy(params.salt(), buf[:Argon2SaltSize])
params.passes = buf[Argon2SaltSize]
params.parallelism = buf[Argon2SaltSize+1]
params.memoryExp = buf[Argon2SaltSize+2]
return params, nil
case GnuS2K:
// This is a GNU extension. See
// https://git.gnupg.org/cgi-bin/gitweb.cgi?p=gnupg.git;a=blob;f=doc/DETAILS;h=fe55ae16ab4e26d8356dc574c9e8bc935e71aef1;hb=23191d7851eae2217ecdac6484349849a24fd94a#l1109
if _, err = io.ReadFull(r, buf[:5]); err != nil {
return nil, err
}
params.hashId = buf[0]
if buf[1] == 'G' && buf[2] == 'N' && buf[3] == 'U' && buf[4] == 1 {
return params, nil
}
return nil, errors.UnsupportedError("GNU S2K extension")
}
return nil, errors.UnsupportedError("S2K function")
}
func (params *Params) Dummy() bool {
return params != nil && params.mode == GnuS2K
}
func (params *Params) salt() []byte {
switch params.mode {
case SaltedS2K, IteratedSaltedS2K: return params.saltBytes[:8]
case Argon2S2K: return params.saltBytes[:Argon2SaltSize]
default: return nil
}
}
func (params *Params) Function() (f func(out, in []byte), err error) {
if params.Dummy() {
return nil, errors.ErrDummyPrivateKey("dummy key found")
}
var hashObj crypto.Hash
if params.mode != Argon2S2K {
var ok bool
hashObj, ok = algorithm.HashIdToHashWithSha1(params.hashId)
if !ok {
return nil, errors.UnsupportedError("hash for S2K function: " + strconv.Itoa(int(params.hashId)))
}
if !hashObj.Available() {
return nil, errors.UnsupportedError("hash not available: " + strconv.Itoa(int(hashObj)))
}
}
switch params.mode {
case SimpleS2K:
f := func(out, in []byte) {
Simple(out, hashObj.New(), in)
}
return f, nil
case SaltedS2K:
f := func(out, in []byte) {
Salted(out, hashObj.New(), in, params.salt())
}
return f, nil
case IteratedSaltedS2K:
f := func(out, in []byte) {
Iterated(out, hashObj.New(), in, params.salt(), decodeCount(params.countByte))
}
return f, nil
case Argon2S2K:
f := func(out, in []byte) {
Argon2(out, in, params.salt(), params.passes, params.parallelism, params.memoryExp)
}
return f, nil
}
return nil, errors.UnsupportedError("S2K function")
}
func (params *Params) Serialize(w io.Writer) (err error) {
if _, err = w.Write([]byte{uint8(params.mode)}); err != nil {
return
}
if params.mode != Argon2S2K {
if _, err = w.Write([]byte{params.hashId}); err != nil {
return
}
}
if params.Dummy() {
_, err = w.Write(append([]byte("GNU"), 1))
return
}
if params.mode > 0 {
if _, err = w.Write(params.salt()); err != nil {
return
}
if params.mode == IteratedSaltedS2K {
_, err = w.Write([]byte{params.countByte})
}
if params.mode == Argon2S2K {
_, err = w.Write([]byte{params.passes, params.parallelism, params.memoryExp})
}
}
return
}
// Serialize salts and stretches the given passphrase and writes the
// resulting key into key. It also serializes an S2K descriptor to
// w. The key stretching can be configured with c, which may be
// nil. In that case, sensible defaults will be used.
func Serialize(w io.Writer, key []byte, rand io.Reader, passphrase []byte, c *Config) error {
params, err := Generate(rand, c)
if err != nil {
return err
}
err = params.Serialize(w)
if err != nil {
return err
}
f, err := params.Function()
if err != nil {
return err
}
f(key, passphrase)
return nil
}