mirror of
https://github.com/cheat/cheat.git
synced 2024-11-25 15:31:36 +01:00
80c91cbdee
Integrate `go-git` into the application, and use it to `git clone` cheatsheets when the installer runs. Previously, the installer required that `git` be installed on the system `PATH`, so this change has to big advantages: 1. It removes that system dependency on `git` 2. It paves the way for implementing the `--update` command Additionally, `cheat` now performs a `--depth=1` clone when installing cheatsheets, which should at least somewhat improve installation times (especially on slow network connections).
176 lines
4.7 KiB
Go
176 lines
4.7 KiB
Go
package ed25519
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"math/bits"
|
|
)
|
|
|
|
var order = [paramB]byte{
|
|
0xed, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58,
|
|
0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,
|
|
}
|
|
|
|
// isLessThan returns true if 0 <= x < y, and assumes that slices have the same length.
|
|
func isLessThan(x, y []byte) bool {
|
|
i := len(x) - 1
|
|
for i > 0 && x[i] == y[i] {
|
|
i--
|
|
}
|
|
return x[i] < y[i]
|
|
}
|
|
|
|
// reduceModOrder calculates k = k mod order of the curve.
|
|
func reduceModOrder(k []byte, is512Bit bool) {
|
|
var X [((2 * paramB) * 8) / 64]uint64
|
|
numWords := len(k) >> 3
|
|
for i := 0; i < numWords; i++ {
|
|
X[i] = binary.LittleEndian.Uint64(k[i*8 : (i+1)*8])
|
|
}
|
|
red512(&X, is512Bit)
|
|
for i := 0; i < numWords; i++ {
|
|
binary.LittleEndian.PutUint64(k[i*8:(i+1)*8], X[i])
|
|
}
|
|
}
|
|
|
|
// red512 calculates x = x mod Order of the curve.
|
|
func red512(x *[8]uint64, full bool) {
|
|
// Implementation of Algs.(14.47)+(14.52) of Handbook of Applied
|
|
// Cryptography, by A. Menezes, P. van Oorschot, and S. Vanstone.
|
|
const (
|
|
ell0 = uint64(0x5812631a5cf5d3ed)
|
|
ell1 = uint64(0x14def9dea2f79cd6)
|
|
ell160 = uint64(0x812631a5cf5d3ed0)
|
|
ell161 = uint64(0x4def9dea2f79cd65)
|
|
ell162 = uint64(0x0000000000000001)
|
|
)
|
|
|
|
var c0, c1, c2, c3 uint64
|
|
r0, r1, r2, r3, r4 := x[0], x[1], x[2], x[3], uint64(0)
|
|
|
|
if full {
|
|
q0, q1, q2, q3 := x[4], x[5], x[6], x[7]
|
|
|
|
for i := 0; i < 3; i++ {
|
|
h0, s0 := bits.Mul64(q0, ell160)
|
|
h1, s1 := bits.Mul64(q1, ell160)
|
|
h2, s2 := bits.Mul64(q2, ell160)
|
|
h3, s3 := bits.Mul64(q3, ell160)
|
|
|
|
s1, c0 = bits.Add64(h0, s1, 0)
|
|
s2, c1 = bits.Add64(h1, s2, c0)
|
|
s3, c2 = bits.Add64(h2, s3, c1)
|
|
s4, _ := bits.Add64(h3, 0, c2)
|
|
|
|
h0, l0 := bits.Mul64(q0, ell161)
|
|
h1, l1 := bits.Mul64(q1, ell161)
|
|
h2, l2 := bits.Mul64(q2, ell161)
|
|
h3, l3 := bits.Mul64(q3, ell161)
|
|
|
|
l1, c0 = bits.Add64(h0, l1, 0)
|
|
l2, c1 = bits.Add64(h1, l2, c0)
|
|
l3, c2 = bits.Add64(h2, l3, c1)
|
|
l4, _ := bits.Add64(h3, 0, c2)
|
|
|
|
s1, c0 = bits.Add64(s1, l0, 0)
|
|
s2, c1 = bits.Add64(s2, l1, c0)
|
|
s3, c2 = bits.Add64(s3, l2, c1)
|
|
s4, c3 = bits.Add64(s4, l3, c2)
|
|
s5, s6 := bits.Add64(l4, 0, c3)
|
|
|
|
s2, c0 = bits.Add64(s2, q0, 0)
|
|
s3, c1 = bits.Add64(s3, q1, c0)
|
|
s4, c2 = bits.Add64(s4, q2, c1)
|
|
s5, c3 = bits.Add64(s5, q3, c2)
|
|
s6, s7 := bits.Add64(s6, 0, c3)
|
|
|
|
q := q0 | q1 | q2 | q3
|
|
m := -((q | -q) >> 63) // if q=0 then m=0...0 else m=1..1
|
|
s0 &= m
|
|
s1 &= m
|
|
s2 &= m
|
|
s3 &= m
|
|
q0, q1, q2, q3 = s4, s5, s6, s7
|
|
|
|
if (i+1)%2 == 0 {
|
|
r0, c0 = bits.Add64(r0, s0, 0)
|
|
r1, c1 = bits.Add64(r1, s1, c0)
|
|
r2, c2 = bits.Add64(r2, s2, c1)
|
|
r3, c3 = bits.Add64(r3, s3, c2)
|
|
r4, _ = bits.Add64(r4, 0, c3)
|
|
} else {
|
|
r0, c0 = bits.Sub64(r0, s0, 0)
|
|
r1, c1 = bits.Sub64(r1, s1, c0)
|
|
r2, c2 = bits.Sub64(r2, s2, c1)
|
|
r3, c3 = bits.Sub64(r3, s3, c2)
|
|
r4, _ = bits.Sub64(r4, 0, c3)
|
|
}
|
|
}
|
|
|
|
m := -(r4 >> 63)
|
|
r0, c0 = bits.Add64(r0, m&ell160, 0)
|
|
r1, c1 = bits.Add64(r1, m&ell161, c0)
|
|
r2, c2 = bits.Add64(r2, m&ell162, c1)
|
|
r3, c3 = bits.Add64(r3, 0, c2)
|
|
r4, _ = bits.Add64(r4, m&1, c3)
|
|
x[4], x[5], x[6], x[7] = 0, 0, 0, 0
|
|
}
|
|
|
|
q0 := (r4 << 4) | (r3 >> 60)
|
|
r3 &= (uint64(1) << 60) - 1
|
|
|
|
h0, s0 := bits.Mul64(ell0, q0)
|
|
h1, s1 := bits.Mul64(ell1, q0)
|
|
s1, c0 = bits.Add64(h0, s1, 0)
|
|
s2, _ := bits.Add64(h1, 0, c0)
|
|
|
|
r0, c0 = bits.Sub64(r0, s0, 0)
|
|
r1, c1 = bits.Sub64(r1, s1, c0)
|
|
r2, c2 = bits.Sub64(r2, s2, c1)
|
|
r3, _ = bits.Sub64(r3, 0, c2)
|
|
|
|
x[0], x[1], x[2], x[3] = r0, r1, r2, r3
|
|
}
|
|
|
|
// calculateS performs s = r+k*a mod Order of the curve.
|
|
func calculateS(s, r, k, a []byte) {
|
|
K := [4]uint64{
|
|
binary.LittleEndian.Uint64(k[0*8 : 1*8]),
|
|
binary.LittleEndian.Uint64(k[1*8 : 2*8]),
|
|
binary.LittleEndian.Uint64(k[2*8 : 3*8]),
|
|
binary.LittleEndian.Uint64(k[3*8 : 4*8]),
|
|
}
|
|
S := [8]uint64{
|
|
binary.LittleEndian.Uint64(r[0*8 : 1*8]),
|
|
binary.LittleEndian.Uint64(r[1*8 : 2*8]),
|
|
binary.LittleEndian.Uint64(r[2*8 : 3*8]),
|
|
binary.LittleEndian.Uint64(r[3*8 : 4*8]),
|
|
}
|
|
var c3 uint64
|
|
for i := range K {
|
|
ai := binary.LittleEndian.Uint64(a[i*8 : (i+1)*8])
|
|
|
|
h0, l0 := bits.Mul64(K[0], ai)
|
|
h1, l1 := bits.Mul64(K[1], ai)
|
|
h2, l2 := bits.Mul64(K[2], ai)
|
|
h3, l3 := bits.Mul64(K[3], ai)
|
|
|
|
l1, c0 := bits.Add64(h0, l1, 0)
|
|
l2, c1 := bits.Add64(h1, l2, c0)
|
|
l3, c2 := bits.Add64(h2, l3, c1)
|
|
l4, _ := bits.Add64(h3, 0, c2)
|
|
|
|
S[i+0], c0 = bits.Add64(S[i+0], l0, 0)
|
|
S[i+1], c1 = bits.Add64(S[i+1], l1, c0)
|
|
S[i+2], c2 = bits.Add64(S[i+2], l2, c1)
|
|
S[i+3], c3 = bits.Add64(S[i+3], l3, c2)
|
|
S[i+4], _ = bits.Add64(S[i+4], l4, c3)
|
|
}
|
|
red512(&S, true)
|
|
binary.LittleEndian.PutUint64(s[0*8:1*8], S[0])
|
|
binary.LittleEndian.PutUint64(s[1*8:2*8], S[1])
|
|
binary.LittleEndian.PutUint64(s[2*8:3*8], S[2])
|
|
binary.LittleEndian.PutUint64(s[3*8:4*8], S[3])
|
|
}
|