mirror of
https://github.com/cheat/cheat.git
synced 2024-11-22 14:01:36 +01:00
95a4e31b6c
Upgrade all dependencies to newest versions.
412 lines
12 KiB
Go
412 lines
12 KiB
Go
// Package ed448 implements Ed448 signature scheme as described in RFC-8032.
|
|
//
|
|
// This package implements two signature variants.
|
|
//
|
|
// | Scheme Name | Sign Function | Verification | Context |
|
|
// |-------------|-------------------|---------------|-------------------|
|
|
// | Ed448 | Sign | Verify | Yes, can be empty |
|
|
// | Ed448Ph | SignPh | VerifyPh | Yes, can be empty |
|
|
// | All above | (PrivateKey).Sign | VerifyAny | As above |
|
|
//
|
|
// Specific functions for sign and verify are defined. A generic signing
|
|
// function for all schemes is available through the crypto.Signer interface,
|
|
// which is implemented by the PrivateKey type. A correspond all-in-one
|
|
// verification method is provided by the VerifyAny function.
|
|
//
|
|
// Both schemes require a context string for domain separation. This parameter
|
|
// is passed using a SignerOptions struct defined in this package.
|
|
//
|
|
// References:
|
|
//
|
|
// - RFC8032: https://rfc-editor.org/rfc/rfc8032.txt
|
|
// - EdDSA for more curves: https://eprint.iacr.org/2015/677
|
|
// - High-speed high-security signatures: https://doi.org/10.1007/s13389-012-0027-1
|
|
package ed448
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto"
|
|
cryptoRand "crypto/rand"
|
|
"crypto/subtle"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"strconv"
|
|
|
|
"github.com/cloudflare/circl/ecc/goldilocks"
|
|
"github.com/cloudflare/circl/internal/sha3"
|
|
"github.com/cloudflare/circl/sign"
|
|
)
|
|
|
|
const (
|
|
// ContextMaxSize is the maximum length (in bytes) allowed for context.
|
|
ContextMaxSize = 255
|
|
// PublicKeySize is the length in bytes of Ed448 public keys.
|
|
PublicKeySize = 57
|
|
// PrivateKeySize is the length in bytes of Ed448 private keys.
|
|
PrivateKeySize = 114
|
|
// SignatureSize is the length in bytes of signatures.
|
|
SignatureSize = 114
|
|
// SeedSize is the size, in bytes, of private key seeds. These are the private key representations used by RFC 8032.
|
|
SeedSize = 57
|
|
)
|
|
|
|
const (
|
|
paramB = 456 / 8 // Size of keys in bytes.
|
|
hashSize = 2 * paramB // Size of the hash function's output.
|
|
)
|
|
|
|
// SignerOptions implements crypto.SignerOpts and augments with parameters
|
|
// that are specific to the Ed448 signature schemes.
|
|
type SignerOptions struct {
|
|
// Hash must be crypto.Hash(0) for both Ed448 and Ed448Ph.
|
|
crypto.Hash
|
|
|
|
// Context is an optional domain separation string for signing.
|
|
// Its length must be less or equal than 255 bytes.
|
|
Context string
|
|
|
|
// Scheme is an identifier for choosing a signature scheme.
|
|
Scheme SchemeID
|
|
}
|
|
|
|
// SchemeID is an identifier for each signature scheme.
|
|
type SchemeID uint
|
|
|
|
const (
|
|
ED448 SchemeID = iota
|
|
ED448Ph
|
|
)
|
|
|
|
// PublicKey is the type of Ed448 public keys.
|
|
type PublicKey []byte
|
|
|
|
// Equal reports whether pub and x have the same value.
|
|
func (pub PublicKey) Equal(x crypto.PublicKey) bool {
|
|
xx, ok := x.(PublicKey)
|
|
return ok && bytes.Equal(pub, xx)
|
|
}
|
|
|
|
// PrivateKey is the type of Ed448 private keys. It implements crypto.Signer.
|
|
type PrivateKey []byte
|
|
|
|
// Equal reports whether priv and x have the same value.
|
|
func (priv PrivateKey) Equal(x crypto.PrivateKey) bool {
|
|
xx, ok := x.(PrivateKey)
|
|
return ok && subtle.ConstantTimeCompare(priv, xx) == 1
|
|
}
|
|
|
|
// Public returns the PublicKey corresponding to priv.
|
|
func (priv PrivateKey) Public() crypto.PublicKey {
|
|
publicKey := make([]byte, PublicKeySize)
|
|
copy(publicKey, priv[SeedSize:])
|
|
return PublicKey(publicKey)
|
|
}
|
|
|
|
// Seed returns the private key seed corresponding to priv. It is provided for
|
|
// interoperability with RFC 8032. RFC 8032's private keys correspond to seeds
|
|
// in this package.
|
|
func (priv PrivateKey) Seed() []byte {
|
|
seed := make([]byte, SeedSize)
|
|
copy(seed, priv[:SeedSize])
|
|
return seed
|
|
}
|
|
|
|
func (priv PrivateKey) Scheme() sign.Scheme { return sch }
|
|
|
|
func (pub PublicKey) Scheme() sign.Scheme { return sch }
|
|
|
|
func (priv PrivateKey) MarshalBinary() (data []byte, err error) {
|
|
privateKey := make(PrivateKey, PrivateKeySize)
|
|
copy(privateKey, priv)
|
|
return privateKey, nil
|
|
}
|
|
|
|
func (pub PublicKey) MarshalBinary() (data []byte, err error) {
|
|
publicKey := make(PublicKey, PublicKeySize)
|
|
copy(publicKey, pub)
|
|
return publicKey, nil
|
|
}
|
|
|
|
// Sign creates a signature of a message given a key pair.
|
|
// This function supports all the two signature variants defined in RFC-8032,
|
|
// namely Ed448 (or pure EdDSA) and Ed448Ph.
|
|
// The opts.HashFunc() must return zero to the specify Ed448 variant. This can
|
|
// be achieved by passing crypto.Hash(0) as the value for opts.
|
|
// Use an Options struct to pass a bool indicating that the ed448Ph variant
|
|
// should be used.
|
|
// The struct can also be optionally used to pass a context string for signing.
|
|
func (priv PrivateKey) Sign(
|
|
rand io.Reader,
|
|
message []byte,
|
|
opts crypto.SignerOpts,
|
|
) (signature []byte, err error) {
|
|
var ctx string
|
|
var scheme SchemeID
|
|
|
|
if o, ok := opts.(SignerOptions); ok {
|
|
ctx = o.Context
|
|
scheme = o.Scheme
|
|
}
|
|
|
|
switch true {
|
|
case scheme == ED448 && opts.HashFunc() == crypto.Hash(0):
|
|
return Sign(priv, message, ctx), nil
|
|
case scheme == ED448Ph && opts.HashFunc() == crypto.Hash(0):
|
|
return SignPh(priv, message, ctx), nil
|
|
default:
|
|
return nil, errors.New("ed448: bad hash algorithm")
|
|
}
|
|
}
|
|
|
|
// GenerateKey generates a public/private key pair using entropy from rand.
|
|
// If rand is nil, crypto/rand.Reader will be used.
|
|
func GenerateKey(rand io.Reader) (PublicKey, PrivateKey, error) {
|
|
if rand == nil {
|
|
rand = cryptoRand.Reader
|
|
}
|
|
|
|
seed := make(PrivateKey, SeedSize)
|
|
if _, err := io.ReadFull(rand, seed); err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
privateKey := NewKeyFromSeed(seed)
|
|
publicKey := make([]byte, PublicKeySize)
|
|
copy(publicKey, privateKey[SeedSize:])
|
|
|
|
return publicKey, privateKey, nil
|
|
}
|
|
|
|
// NewKeyFromSeed calculates a private key from a seed. It will panic if
|
|
// len(seed) is not SeedSize. This function is provided for interoperability
|
|
// with RFC 8032. RFC 8032's private keys correspond to seeds in this
|
|
// package.
|
|
func NewKeyFromSeed(seed []byte) PrivateKey {
|
|
privateKey := make([]byte, PrivateKeySize)
|
|
newKeyFromSeed(privateKey, seed)
|
|
return privateKey
|
|
}
|
|
|
|
func newKeyFromSeed(privateKey, seed []byte) {
|
|
if l := len(seed); l != SeedSize {
|
|
panic("ed448: bad seed length: " + strconv.Itoa(l))
|
|
}
|
|
|
|
var h [hashSize]byte
|
|
H := sha3.NewShake256()
|
|
_, _ = H.Write(seed)
|
|
_, _ = H.Read(h[:])
|
|
s := &goldilocks.Scalar{}
|
|
deriveSecretScalar(s, h[:paramB])
|
|
|
|
copy(privateKey[:SeedSize], seed)
|
|
_ = goldilocks.Curve{}.ScalarBaseMult(s).ToBytes(privateKey[SeedSize:])
|
|
}
|
|
|
|
func signAll(signature []byte, privateKey PrivateKey, message, ctx []byte, preHash bool) {
|
|
if len(ctx) > ContextMaxSize {
|
|
panic(fmt.Errorf("ed448: bad context length: " + strconv.Itoa(len(ctx))))
|
|
}
|
|
|
|
H := sha3.NewShake256()
|
|
var PHM []byte
|
|
|
|
if preHash {
|
|
var h [64]byte
|
|
_, _ = H.Write(message)
|
|
_, _ = H.Read(h[:])
|
|
PHM = h[:]
|
|
H.Reset()
|
|
} else {
|
|
PHM = message
|
|
}
|
|
|
|
// 1. Hash the 57-byte private key using SHAKE256(x, 114).
|
|
var h [hashSize]byte
|
|
_, _ = H.Write(privateKey[:SeedSize])
|
|
_, _ = H.Read(h[:])
|
|
s := &goldilocks.Scalar{}
|
|
deriveSecretScalar(s, h[:paramB])
|
|
prefix := h[paramB:]
|
|
|
|
// 2. Compute SHAKE256(dom4(F, C) || prefix || PH(M), 114).
|
|
var rPM [hashSize]byte
|
|
H.Reset()
|
|
|
|
writeDom(&H, ctx, preHash)
|
|
|
|
_, _ = H.Write(prefix)
|
|
_, _ = H.Write(PHM)
|
|
_, _ = H.Read(rPM[:])
|
|
|
|
// 3. Compute the point [r]B.
|
|
r := &goldilocks.Scalar{}
|
|
r.FromBytes(rPM[:])
|
|
R := (&[paramB]byte{})[:]
|
|
if err := (goldilocks.Curve{}.ScalarBaseMult(r).ToBytes(R)); err != nil {
|
|
panic(err)
|
|
}
|
|
// 4. Compute SHAKE256(dom4(F, C) || R || A || PH(M), 114)
|
|
var hRAM [hashSize]byte
|
|
H.Reset()
|
|
|
|
writeDom(&H, ctx, preHash)
|
|
|
|
_, _ = H.Write(R)
|
|
_, _ = H.Write(privateKey[SeedSize:])
|
|
_, _ = H.Write(PHM)
|
|
_, _ = H.Read(hRAM[:])
|
|
|
|
// 5. Compute S = (r + k * s) mod order.
|
|
k := &goldilocks.Scalar{}
|
|
k.FromBytes(hRAM[:])
|
|
S := &goldilocks.Scalar{}
|
|
S.Mul(k, s)
|
|
S.Add(S, r)
|
|
|
|
// 6. The signature is the concatenation of R and S.
|
|
copy(signature[:paramB], R[:])
|
|
copy(signature[paramB:], S[:])
|
|
}
|
|
|
|
// Sign signs the message with privateKey and returns a signature.
|
|
// This function supports the signature variant defined in RFC-8032: Ed448,
|
|
// also known as the pure version of EdDSA.
|
|
// It will panic if len(privateKey) is not PrivateKeySize.
|
|
func Sign(priv PrivateKey, message []byte, ctx string) []byte {
|
|
signature := make([]byte, SignatureSize)
|
|
signAll(signature, priv, message, []byte(ctx), false)
|
|
return signature
|
|
}
|
|
|
|
// SignPh creates a signature of a message given a keypair.
|
|
// This function supports the signature variant defined in RFC-8032: Ed448ph,
|
|
// meaning it internally hashes the message using SHAKE-256.
|
|
// Context could be passed to this function, which length should be no more than
|
|
// 255. It can be empty.
|
|
func SignPh(priv PrivateKey, message []byte, ctx string) []byte {
|
|
signature := make([]byte, SignatureSize)
|
|
signAll(signature, priv, message, []byte(ctx), true)
|
|
return signature
|
|
}
|
|
|
|
func verify(public PublicKey, message, signature, ctx []byte, preHash bool) bool {
|
|
if len(public) != PublicKeySize ||
|
|
len(signature) != SignatureSize ||
|
|
len(ctx) > ContextMaxSize ||
|
|
!isLessThanOrder(signature[paramB:]) {
|
|
return false
|
|
}
|
|
|
|
P, err := goldilocks.FromBytes(public)
|
|
if err != nil {
|
|
return false
|
|
}
|
|
|
|
H := sha3.NewShake256()
|
|
var PHM []byte
|
|
|
|
if preHash {
|
|
var h [64]byte
|
|
_, _ = H.Write(message)
|
|
_, _ = H.Read(h[:])
|
|
PHM = h[:]
|
|
H.Reset()
|
|
} else {
|
|
PHM = message
|
|
}
|
|
|
|
var hRAM [hashSize]byte
|
|
R := signature[:paramB]
|
|
|
|
writeDom(&H, ctx, preHash)
|
|
|
|
_, _ = H.Write(R)
|
|
_, _ = H.Write(public)
|
|
_, _ = H.Write(PHM)
|
|
_, _ = H.Read(hRAM[:])
|
|
|
|
k := &goldilocks.Scalar{}
|
|
k.FromBytes(hRAM[:])
|
|
S := &goldilocks.Scalar{}
|
|
S.FromBytes(signature[paramB:])
|
|
|
|
encR := (&[paramB]byte{})[:]
|
|
P.Neg()
|
|
_ = goldilocks.Curve{}.CombinedMult(S, k, P).ToBytes(encR)
|
|
return bytes.Equal(R, encR)
|
|
}
|
|
|
|
// VerifyAny returns true if the signature is valid. Failure cases are invalid
|
|
// signature, or when the public key cannot be decoded.
|
|
// This function supports all the two signature variants defined in RFC-8032,
|
|
// namely Ed448 (or pure EdDSA) and Ed448Ph.
|
|
// The opts.HashFunc() must return zero, this can be achieved by passing
|
|
// crypto.Hash(0) as the value for opts.
|
|
// Use a SignerOptions struct to pass a context string for signing.
|
|
func VerifyAny(public PublicKey, message, signature []byte, opts crypto.SignerOpts) bool {
|
|
var ctx string
|
|
var scheme SchemeID
|
|
if o, ok := opts.(SignerOptions); ok {
|
|
ctx = o.Context
|
|
scheme = o.Scheme
|
|
}
|
|
|
|
switch true {
|
|
case scheme == ED448 && opts.HashFunc() == crypto.Hash(0):
|
|
return Verify(public, message, signature, ctx)
|
|
case scheme == ED448Ph && opts.HashFunc() == crypto.Hash(0):
|
|
return VerifyPh(public, message, signature, ctx)
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
// Verify returns true if the signature is valid. Failure cases are invalid
|
|
// signature, or when the public key cannot be decoded.
|
|
// This function supports the signature variant defined in RFC-8032: Ed448,
|
|
// also known as the pure version of EdDSA.
|
|
func Verify(public PublicKey, message, signature []byte, ctx string) bool {
|
|
return verify(public, message, signature, []byte(ctx), false)
|
|
}
|
|
|
|
// VerifyPh returns true if the signature is valid. Failure cases are invalid
|
|
// signature, or when the public key cannot be decoded.
|
|
// This function supports the signature variant defined in RFC-8032: Ed448ph,
|
|
// meaning it internally hashes the message using SHAKE-256.
|
|
// Context could be passed to this function, which length should be no more than
|
|
// 255. It can be empty.
|
|
func VerifyPh(public PublicKey, message, signature []byte, ctx string) bool {
|
|
return verify(public, message, signature, []byte(ctx), true)
|
|
}
|
|
|
|
func deriveSecretScalar(s *goldilocks.Scalar, h []byte) {
|
|
h[0] &= 0xFC // The two least significant bits of the first octet are cleared,
|
|
h[paramB-1] = 0x00 // all eight bits the last octet are cleared, and
|
|
h[paramB-2] |= 0x80 // the highest bit of the second to last octet is set.
|
|
s.FromBytes(h[:paramB])
|
|
}
|
|
|
|
// isLessThanOrder returns true if 0 <= x < order and if the last byte of x is zero.
|
|
func isLessThanOrder(x []byte) bool {
|
|
order := goldilocks.Curve{}.Order()
|
|
i := len(order) - 1
|
|
for i > 0 && x[i] == order[i] {
|
|
i--
|
|
}
|
|
return x[paramB-1] == 0 && x[i] < order[i]
|
|
}
|
|
|
|
func writeDom(h io.Writer, ctx []byte, preHash bool) {
|
|
dom4 := "SigEd448"
|
|
_, _ = h.Write([]byte(dom4))
|
|
|
|
if preHash {
|
|
_, _ = h.Write([]byte{byte(0x01), byte(len(ctx))})
|
|
} else {
|
|
_, _ = h.Write([]byte{byte(0x00), byte(len(ctx))})
|
|
}
|
|
_, _ = h.Write(ctx)
|
|
}
|