mirror of
https://github.com/cheat/cheat.git
synced 2024-11-23 22:41:35 +01:00
80c91cbdee
Integrate `go-git` into the application, and use it to `git clone` cheatsheets when the installer runs. Previously, the installer required that `git` be installed on the system `PATH`, so this change has to big advantages: 1. It removes that system dependency on `git` 2. It paves the way for implementing the `--update` command Additionally, `cheat` now performs a `--depth=1` clone when installing cheatsheets, which should at least somewhat improve installation times (especially on slow network connections).
136 lines
4.0 KiB
Go
136 lines
4.0 KiB
Go
package goldilocks
|
|
|
|
import (
|
|
"fmt"
|
|
|
|
fp "github.com/cloudflare/circl/math/fp448"
|
|
)
|
|
|
|
type twistPoint struct{ x, y, z, ta, tb fp.Elt }
|
|
|
|
type preTwistPointAffine struct{ addYX, subYX, dt2 fp.Elt }
|
|
|
|
type preTwistPointProy struct {
|
|
preTwistPointAffine
|
|
z2 fp.Elt
|
|
}
|
|
|
|
func (P *twistPoint) String() string {
|
|
return fmt.Sprintf("x: %v\ny: %v\nz: %v\nta: %v\ntb: %v", P.x, P.y, P.z, P.ta, P.tb)
|
|
}
|
|
|
|
// cneg conditionally negates the point if b=1.
|
|
func (P *twistPoint) cneg(b uint) {
|
|
t := &fp.Elt{}
|
|
fp.Neg(t, &P.x)
|
|
fp.Cmov(&P.x, t, b)
|
|
fp.Neg(t, &P.ta)
|
|
fp.Cmov(&P.ta, t, b)
|
|
}
|
|
|
|
// Double updates P with 2P.
|
|
func (P *twistPoint) Double() {
|
|
// This is formula (7) from "Twisted Edwards Curves Revisited" by
|
|
// Hisil H., Wong K.KH., Carter G., Dawson E. (2008)
|
|
// https://doi.org/10.1007/978-3-540-89255-7_20
|
|
Px, Py, Pz, Pta, Ptb := &P.x, &P.y, &P.z, &P.ta, &P.tb
|
|
a, b, c, e, f, g, h := Px, Py, Pz, Pta, Px, Py, Ptb
|
|
fp.Add(e, Px, Py) // x+y
|
|
fp.Sqr(a, Px) // A = x^2
|
|
fp.Sqr(b, Py) // B = y^2
|
|
fp.Sqr(c, Pz) // z^2
|
|
fp.Add(c, c, c) // C = 2*z^2
|
|
fp.Add(h, a, b) // H = A+B
|
|
fp.Sqr(e, e) // (x+y)^2
|
|
fp.Sub(e, e, h) // E = (x+y)^2-A-B
|
|
fp.Sub(g, b, a) // G = B-A
|
|
fp.Sub(f, c, g) // F = C-G
|
|
fp.Mul(Pz, f, g) // Z = F * G
|
|
fp.Mul(Px, e, f) // X = E * F
|
|
fp.Mul(Py, g, h) // Y = G * H, T = E * H
|
|
}
|
|
|
|
// mixAdd calculates P= P+Q, where Q is a precomputed point with Z_Q = 1.
|
|
func (P *twistPoint) mixAddZ1(Q *preTwistPointAffine) {
|
|
fp.Add(&P.z, &P.z, &P.z) // D = 2*z1 (z2=1)
|
|
P.coreAddition(Q)
|
|
}
|
|
|
|
// coreAddition calculates P=P+Q for curves with A=-1.
|
|
func (P *twistPoint) coreAddition(Q *preTwistPointAffine) {
|
|
// This is the formula following (5) from "Twisted Edwards Curves Revisited" by
|
|
// Hisil H., Wong K.KH., Carter G., Dawson E. (2008)
|
|
// https://doi.org/10.1007/978-3-540-89255-7_20
|
|
Px, Py, Pz, Pta, Ptb := &P.x, &P.y, &P.z, &P.ta, &P.tb
|
|
addYX2, subYX2, dt2 := &Q.addYX, &Q.subYX, &Q.dt2
|
|
a, b, c, d, e, f, g, h := Px, Py, &fp.Elt{}, Pz, Pta, Px, Py, Ptb
|
|
fp.Mul(c, Pta, Ptb) // t1 = ta*tb
|
|
fp.Sub(h, Py, Px) // y1-x1
|
|
fp.Add(b, Py, Px) // y1+x1
|
|
fp.Mul(a, h, subYX2) // A = (y1-x1)*(y2-x2)
|
|
fp.Mul(b, b, addYX2) // B = (y1+x1)*(y2+x2)
|
|
fp.Mul(c, c, dt2) // C = 2*D*t1*t2
|
|
fp.Sub(e, b, a) // E = B-A
|
|
fp.Add(h, b, a) // H = B+A
|
|
fp.Sub(f, d, c) // F = D-C
|
|
fp.Add(g, d, c) // G = D+C
|
|
fp.Mul(Pz, f, g) // Z = F * G
|
|
fp.Mul(Px, e, f) // X = E * F
|
|
fp.Mul(Py, g, h) // Y = G * H, T = E * H
|
|
}
|
|
|
|
func (P *preTwistPointAffine) neg() {
|
|
P.addYX, P.subYX = P.subYX, P.addYX
|
|
fp.Neg(&P.dt2, &P.dt2)
|
|
}
|
|
|
|
func (P *preTwistPointAffine) cneg(b int) {
|
|
t := &fp.Elt{}
|
|
fp.Cswap(&P.addYX, &P.subYX, uint(b))
|
|
fp.Neg(t, &P.dt2)
|
|
fp.Cmov(&P.dt2, t, uint(b))
|
|
}
|
|
|
|
func (P *preTwistPointAffine) cmov(Q *preTwistPointAffine, b uint) {
|
|
fp.Cmov(&P.addYX, &Q.addYX, b)
|
|
fp.Cmov(&P.subYX, &Q.subYX, b)
|
|
fp.Cmov(&P.dt2, &Q.dt2, b)
|
|
}
|
|
|
|
// mixAdd calculates P= P+Q, where Q is a precomputed point with Z_Q != 1.
|
|
func (P *twistPoint) mixAdd(Q *preTwistPointProy) {
|
|
fp.Mul(&P.z, &P.z, &Q.z2) // D = 2*z1*z2
|
|
P.coreAddition(&Q.preTwistPointAffine)
|
|
}
|
|
|
|
// oddMultiples calculates T[i] = (2*i-1)P for 0 < i < len(T).
|
|
func (P *twistPoint) oddMultiples(T []preTwistPointProy) {
|
|
if n := len(T); n > 0 {
|
|
T[0].FromTwistPoint(P)
|
|
_2P := *P
|
|
_2P.Double()
|
|
R := &preTwistPointProy{}
|
|
R.FromTwistPoint(&_2P)
|
|
for i := 1; i < n; i++ {
|
|
P.mixAdd(R)
|
|
T[i].FromTwistPoint(P)
|
|
}
|
|
}
|
|
}
|
|
|
|
// cmov conditionally moves Q into P if b=1.
|
|
func (P *preTwistPointProy) cmov(Q *preTwistPointProy, b uint) {
|
|
P.preTwistPointAffine.cmov(&Q.preTwistPointAffine, b)
|
|
fp.Cmov(&P.z2, &Q.z2, b)
|
|
}
|
|
|
|
// FromTwistPoint precomputes some coordinates of Q for missed addition.
|
|
func (P *preTwistPointProy) FromTwistPoint(Q *twistPoint) {
|
|
fp.Add(&P.addYX, &Q.y, &Q.x) // addYX = X + Y
|
|
fp.Sub(&P.subYX, &Q.y, &Q.x) // subYX = Y - X
|
|
fp.Mul(&P.dt2, &Q.ta, &Q.tb) // T = ta*tb
|
|
fp.Mul(&P.dt2, &P.dt2, ¶mDTwist) // D*T
|
|
fp.Add(&P.dt2, &P.dt2, &P.dt2) // dt2 = 2*D*T
|
|
fp.Add(&P.z2, &Q.z, &Q.z) // z2 = 2*Z
|
|
}
|