cheat/vendor/github.com/cloudflare/circl/ecc/goldilocks/twistPoint.go

136 lines
4.0 KiB
Go

package goldilocks
import (
"fmt"
fp "github.com/cloudflare/circl/math/fp448"
)
type twistPoint struct{ x, y, z, ta, tb fp.Elt }
type preTwistPointAffine struct{ addYX, subYX, dt2 fp.Elt }
type preTwistPointProy struct {
preTwistPointAffine
z2 fp.Elt
}
func (P *twistPoint) String() string {
return fmt.Sprintf("x: %v\ny: %v\nz: %v\nta: %v\ntb: %v", P.x, P.y, P.z, P.ta, P.tb)
}
// cneg conditionally negates the point if b=1.
func (P *twistPoint) cneg(b uint) {
t := &fp.Elt{}
fp.Neg(t, &P.x)
fp.Cmov(&P.x, t, b)
fp.Neg(t, &P.ta)
fp.Cmov(&P.ta, t, b)
}
// Double updates P with 2P.
func (P *twistPoint) Double() {
// This is formula (7) from "Twisted Edwards Curves Revisited" by
// Hisil H., Wong K.KH., Carter G., Dawson E. (2008)
// https://doi.org/10.1007/978-3-540-89255-7_20
Px, Py, Pz, Pta, Ptb := &P.x, &P.y, &P.z, &P.ta, &P.tb
a, b, c, e, f, g, h := Px, Py, Pz, Pta, Px, Py, Ptb
fp.Add(e, Px, Py) // x+y
fp.Sqr(a, Px) // A = x^2
fp.Sqr(b, Py) // B = y^2
fp.Sqr(c, Pz) // z^2
fp.Add(c, c, c) // C = 2*z^2
fp.Add(h, a, b) // H = A+B
fp.Sqr(e, e) // (x+y)^2
fp.Sub(e, e, h) // E = (x+y)^2-A-B
fp.Sub(g, b, a) // G = B-A
fp.Sub(f, c, g) // F = C-G
fp.Mul(Pz, f, g) // Z = F * G
fp.Mul(Px, e, f) // X = E * F
fp.Mul(Py, g, h) // Y = G * H, T = E * H
}
// mixAdd calculates P= P+Q, where Q is a precomputed point with Z_Q = 1.
func (P *twistPoint) mixAddZ1(Q *preTwistPointAffine) {
fp.Add(&P.z, &P.z, &P.z) // D = 2*z1 (z2=1)
P.coreAddition(Q)
}
// coreAddition calculates P=P+Q for curves with A=-1.
func (P *twistPoint) coreAddition(Q *preTwistPointAffine) {
// This is the formula following (5) from "Twisted Edwards Curves Revisited" by
// Hisil H., Wong K.KH., Carter G., Dawson E. (2008)
// https://doi.org/10.1007/978-3-540-89255-7_20
Px, Py, Pz, Pta, Ptb := &P.x, &P.y, &P.z, &P.ta, &P.tb
addYX2, subYX2, dt2 := &Q.addYX, &Q.subYX, &Q.dt2
a, b, c, d, e, f, g, h := Px, Py, &fp.Elt{}, Pz, Pta, Px, Py, Ptb
fp.Mul(c, Pta, Ptb) // t1 = ta*tb
fp.Sub(h, Py, Px) // y1-x1
fp.Add(b, Py, Px) // y1+x1
fp.Mul(a, h, subYX2) // A = (y1-x1)*(y2-x2)
fp.Mul(b, b, addYX2) // B = (y1+x1)*(y2+x2)
fp.Mul(c, c, dt2) // C = 2*D*t1*t2
fp.Sub(e, b, a) // E = B-A
fp.Add(h, b, a) // H = B+A
fp.Sub(f, d, c) // F = D-C
fp.Add(g, d, c) // G = D+C
fp.Mul(Pz, f, g) // Z = F * G
fp.Mul(Px, e, f) // X = E * F
fp.Mul(Py, g, h) // Y = G * H, T = E * H
}
func (P *preTwistPointAffine) neg() {
P.addYX, P.subYX = P.subYX, P.addYX
fp.Neg(&P.dt2, &P.dt2)
}
func (P *preTwistPointAffine) cneg(b int) {
t := &fp.Elt{}
fp.Cswap(&P.addYX, &P.subYX, uint(b))
fp.Neg(t, &P.dt2)
fp.Cmov(&P.dt2, t, uint(b))
}
func (P *preTwistPointAffine) cmov(Q *preTwistPointAffine, b uint) {
fp.Cmov(&P.addYX, &Q.addYX, b)
fp.Cmov(&P.subYX, &Q.subYX, b)
fp.Cmov(&P.dt2, &Q.dt2, b)
}
// mixAdd calculates P= P+Q, where Q is a precomputed point with Z_Q != 1.
func (P *twistPoint) mixAdd(Q *preTwistPointProy) {
fp.Mul(&P.z, &P.z, &Q.z2) // D = 2*z1*z2
P.coreAddition(&Q.preTwistPointAffine)
}
// oddMultiples calculates T[i] = (2*i-1)P for 0 < i < len(T).
func (P *twistPoint) oddMultiples(T []preTwistPointProy) {
if n := len(T); n > 0 {
T[0].FromTwistPoint(P)
_2P := *P
_2P.Double()
R := &preTwistPointProy{}
R.FromTwistPoint(&_2P)
for i := 1; i < n; i++ {
P.mixAdd(R)
T[i].FromTwistPoint(P)
}
}
}
// cmov conditionally moves Q into P if b=1.
func (P *preTwistPointProy) cmov(Q *preTwistPointProy, b uint) {
P.preTwistPointAffine.cmov(&Q.preTwistPointAffine, b)
fp.Cmov(&P.z2, &Q.z2, b)
}
// FromTwistPoint precomputes some coordinates of Q for missed addition.
func (P *preTwistPointProy) FromTwistPoint(Q *twistPoint) {
fp.Add(&P.addYX, &Q.y, &Q.x) // addYX = X + Y
fp.Sub(&P.subYX, &Q.y, &Q.x) // subYX = Y - X
fp.Mul(&P.dt2, &Q.ta, &Q.tb) // T = ta*tb
fp.Mul(&P.dt2, &P.dt2, &paramDTwist) // D*T
fp.Add(&P.dt2, &P.dt2, &P.dt2) // dt2 = 2*D*T
fp.Add(&P.z2, &Q.z, &Q.z) // z2 = 2*Z
}